导热硅胶片应用-背光模组
Company News

>Company News

导热硅胶片应用-背光模组

【2016-12-13】 浏览次数:170
*背光模组简介
*CCFL背光源简介
*LED背光源简介
*等离子(PDP) 简介
*背光模组中的导热硅胶片应用以及散热处理

一、背光模组简介
  背光模组(Back light module)为液晶显示器面板(LCD panel)的关键组件之一,由于液晶本身不发光,背光模组之功能即在于供应充足的亮度与分布均匀的光源, 使其能正常显示影像。LCD面板现已广泛应用于监视器、笔记型电脑、数码相机及投影机等具成长潜力之电子产品,因此带动背光模组及其相关零组件的需求持续成长,在面板低价化的刺激下,又以笔记型电脑及LCD监视器等大尺寸用面板需求最大,为背光模组需求成长的主要动力来源,也是背光模组为LCD 面板第二大关键零组件.
  背光模组为LCD 面板第二大关键零组件
二、背光模组别 :
  一般而言,背光模组可分为前光式(Front light )与背光式(Back light)两种,而背光式可依其规模的要求,以灯管的位置做分类,发展出下列三大结构:
  (1) 侧光式(Edge lighting)结构:发光源为摆在侧边之单支光源,导光板采射出成型无印刷式设计,一般常用于18吋以下中小尺寸的背光模组,其侧边入射的光源设计,拥有轻量、薄型、窄框化、低耗电的特色,亦为手机、个人数位助理(PDA) 、笔记型电脑的光源,目前亦有大尺寸背光模组采用侧光式结构。

  (2) 直下型(Bottom lighting)结构:超大尺寸的背光模组,侧光式结构已经无法在重量、消费电力及亮度上占有优势,因此不含导光板且光源放置于正下方的直下型结构便被发展出来。光源由自发性光源(例如灯管、发光二极体等)射出藉由反射板反射后,向上经扩散板均匀分散后于正面射出,因安置空间变大,灯管可依TFT面板大小使用2至多之灯管,但同时也增加了模组的厚度、重量、耗电量、其优点为高辉度、良好的出光视角、光利用效率高、结构简易化等,因而适用于对可携性及空间要求较不挑剔的LCD monitor与LCD TV ,其高消费电力(使用冷阴极管),均一性不佳及造成LCD发热等问题仍需要求改善。
  (3) 中空型结构:随着影像要求的尺吋增加,LCD也朝更大尺寸的方向发展,现在这类超大型的LCD被拿来当作监视器及璧挂式电视,不仅要求大画面、高亮度及轻量化,在电器上亦要求高功l下的低热效应,近年来发展的中空型结构的背光模组,使用热阴极管作为发光源。此结构以空气作为光源传递的媒介,光源向下被菱镜片与反射板对方向调整及反射后,一部分向上穿过导光板并出射于表面,另一部分因全反射再度进入中空腔直到经折反射作用后穿过导光板出射,而向上的光源或直接进入导光板出射,或经一连串哲反射作用再出射:导光板的形状为楔型结构,目的在求均一化的效果。

  三、背光模组关键之光学零组件介绍 :
  背光模组主要系提供液晶面板一均匀、高亮度的光源,基本原理系将常用的点或线型光源,透过简洁有效光机构转化成高亮度且均一辉度的面光源产品。一般结构为利用冷阴极管的线型光源经反射罩进入导光板,转化线光源分布成均匀的面光源,再经扩散片的均光作用与菱镜片的集光作用以提高光源的亮度与均齐度。在此我们就背光模组的几个基本构成组件做些介绍。

背光模组组成:
发光源(Light source)、导光板(light guide plate)、胶框(housing)、反射片(Reflector)、扩散片(Diffuser)、增光片(BEF、棱镜片)、黑白胶(Curtain Tape)等。由于背光要求越来越薄,所以有部份需加铁框(metaL frame)。
背光模组示意图
 
 
  CCFL背光源简介
 
  1.冷阴极萤光灯管(Cold Cathode Fluorescent Lamp),简称CCFL。
  2.CCFL的组成
  2.1.连接器:连接Inverter
  2.2.铁框:保护、固定灯管
  2.3.尼龙铆钉:固定灯管与导光板、反射片、扩散片、錂镜片
  2.4.导光板:导光
  2.5.热缩套管:固定高压导线、绝缘、保护裸露电极端
  2.6.高压导线:导电
  2.7.灯管银反射纸:反射灯管光,使导入导光板
  
3. CCFL产品特征:
  1、高亮度、高功效、低功耗;
  2、能在低温时快速启动;
  3、色温控制准确;
  4、体积小,重量轻;
  5、发热小;
  6、有良好的耐震动性;
  7、易加工成各种形状(直管形、L形、U型、环形等),装饰性强。
  
CCFL产品应用:
  1、背光源:TFT 液晶显示屏、液晶电视、液晶电脑显示器、便携式DVD、汽车、火车、飞机载电视、GPS显示、掌上电脑游戏机及工业仪器显示的背光源。
  2、广告灯箱和装饰照明。
  3、办公自动化设备。
  4、改装汽车灯(天使眼车灯)
  冷阴极灯管(图一所示)在一玻璃管内封入隋性气体Ne+Ar混合气体,其中含有微量水银蒸气(数mg),并于玻璃内壁涂布萤光体,于二电极间加上一高压高频电场,则水银蒸气在此电场内被激发即产生释能发光效应,放出波长253.7nm的紫外线光,而内壁的萤光体原子则因紫外线激发而提升其能阶,当原子反回原低能阶时放射出可见光(此可见光波长由萤光体物质特性决定)。

CCFL示意图
 
 
LED背光源简介
 
  一、 LED 的结构及发光原理
  50 年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于 1960 年。 LED 是英文 light emitting diode (发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以 LED 的抗震性能好。
  发光二极管的核心部分是由 p 型半导体和 n 型半导体组成的晶片,在 p 型半导体和 n 型半导体之间有一个过渡层,称为 p-n 结。在某些半导体材料的 PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。 PN 结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称 LED 。当它处于正向工作状态时(即两端加上正向电压),电流从 LED 阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。
二、 LED 光源的特点    
1. 电压: LED 使用低压电源,供电电压在 6-24V 之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少 80% 3. 适用性:很小,每个单元 LED 小片是 3-5mm 的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性: 10 万小时,光衰为初始的 50% 5. 响应时间:其白炽灯的响应时间为毫秒级, LED 灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的 LED ,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格: LED 的价格比较昂贵,较之 于白炽灯,几只 LED 的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上 300 ~ 500 只二极管构成。
三、单色光 LED 的种类及其发展历史
  最早应用半导体 P-N 结发光原理制成的 LED 光源问世于 20 世纪 60 年代初。当时所用的材料是 GaAsP ,发红光( λ p =650nm ),在驱动电流为 20 毫安时,光通量只有千分之几个流明,相应的发光效率约 0.1 流明 / 瓦。70 年代中期,引入元素 In 和 N ,使 LED 产生绿光( λ p =555nm ),黄光( λ p =590nm )和橙光( λ p =610nm ),光效也提高到 1 流明 / 瓦。到了 80 年代初,出现了 GaAlAs 的 LED 光源,使得红色 LED 的光效达到 10 流明 / 瓦。90 年代初,发红光、黄光的 GaAlInP 和发绿、蓝光的 GaInN 两种新材料的开发成功,使 LED 的光效得到大幅度的提高。在 2000 年,前者做成的 LED 在红、橙区( λ p =615nm )的光效达到 100 流明 / 瓦,而后者制成的 LED 在绿色区域( λ p =530nm )的光效可以达到 50 流明 / 瓦。
  四、单色光 LED 的应用
  最初 LED 用作仪器仪表的指示光源,后来各种光色的 LED 在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以 12 英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的 140 瓦白炽灯作为光源,它产生 2000 流明的白光。经红色滤光片后,光损失 90% ,只剩下 200 流明的红光。而在新设计的灯中, Lumileds 公司采用了 18 个红色 LED 光源,包括电路损失在内,共耗电 14 瓦,即可产生同样的光效。
  
汽车信号灯也是 LED 光源应用的重要领域。 1987 年,我国开始在汽车上安装高位刹车灯,由于 LED 响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。
  另外, LED 灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。
五、白光 LED 的开发
  对于一般照明而言,人们更需要白色的光源。 1998 年发白光的 LED 开发成功。这种 LED 是将 GaN 芯片和钇铝石榴石( YAG )封装在一起做成。 GaN 芯片发蓝光( λ p =465nm , Wd=30nm ),高温烧结制成的含 Ce3+ 的 YAG 荧光粉受此蓝光激发后发出黄色光发射,峰值 550nm 。蓝光 LED 基片安装在碗形反射腔中,覆盖以混有 YAG 的树脂薄层,约 200-500nm 。 LED 基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到得白光。现在,对于 InGaN/YAG 白色 LED ,通过改变 YAG 荧光粉的化学组成和调节荧光粉层的厚度,可以获得色温 3500-10000K 的各色白光。
  其实LED灯就是我们平常所说的节能灯。(这点是错的,日常使用的节能灯和LED的工作原理根本不一样!(但是LED灯被称之为节能灯却是没有问题的)
  不同功率的LED灯,价格是不一样的。而且不同的工艺,不同的外表材质也会造成价格的差异。
六、LED 的优势
       LED光源具有使用低压电源、耗能少、适用性强、稳定性高、响应时间短、对环境无污染、多色发光等的优点,虽然价格较现有照明器材昂贵,仍被认为是它将不可避免地现有照明器件。
  LED特点和优点:LED的内在特征决定了它是最理想的光源去代替传统的光源,它有着广泛的用途。       *体积小:LED基本上是一块很小的晶片被封装在环氧树脂里面,所以它非常的小,非常的轻。       *耗电量低:LED耗电非常低,一般来说LED的工作电压是2-3.6V。工作电流是0.02-0.03A。这就是说:它消耗的电不超过0.1W。       *使用寿命长:在恰当的电流和电压下,LED的使用寿命可达10万小时       *高亮度、低热量       *环保:LED是由无毒的材料作成,不像荧光灯含水银会造成污染,同时LED也可以回收再利用。       *坚固耐用:LED是被完全的封装在环氧树脂里面,它比灯泡和荧光灯管都坚固。灯体内也没有松动的部分,这些特点使得LED可以说是不易损坏的。
 
区域控制行LED背光源布局

 等离子(PDP)简介:
 
      等离子显示屏PDP是一种利用气体放电的显示装置,这种屏幕采用了等离子腔作为发光元件。大量的等离子腔排列在一起构成屏幕。等离子显示屏的屏体是由相距几百微米的两块玻璃板组成,与空气隔绝,每个等离子腔体内部充有氖氙等惰性气体,密封在两层玻璃之间的等离子腔中的气体会产生紫外光,从而激励平板显示屏上的红绿蓝三基色荧光粉发出可见光。每个离子腔体作为一个像素,其工作机理类似普通日光灯。这些像素的明暗和颜色变化组合,产生各种灰度和色彩的图像,而电视彩色图像由各个独立的像素发光综合而成。 
   等离子电视的优点:
  等离子(PDP)电视与传统的CRT电视机相比,PDP电视机的最突出特点就是“大而薄”,其他的特点还表现在:
  (1)薄而轻的结构
     由于PDP显示模块配身具有薄而轻的特点,决定了显示屏在总体上相应的结构特征,同时显示尺寸的增大也不需要相应地增大屏体的厚度。
  (2)宽视
     PDP可以做到和CRT同样宽的视角,上下左右大于160度。而液晶(LCD)在水平方向视角一般为120度左,垂直方向则更少。
  (3)防电磁干扰
     由于显示原理的差别,来自外界的电磁干扰,如马达、扬声器等,对PDP的图像几乎没有影响。相比之下,CRT受电磁场的干扰要明显得多。
 
  (4)纯平的图像无扭曲
    PDP的RGB栅格在平面上呈均匀分布,而在纯平CRT中内表面非平的,会造成典型的枕形失真。并且当画面的局部亮度不均匀时,CRT往往还会产生相应的图像扭曲失真,而PDP就不有这种现象。
  (5)没有会聚和聚焦问题
   等离子电视机属于高新尖端的电子产品,对许多顾客来说都是比较陌生的,许多人在使用时都因不了解其原理而小心翼翼的,从而不能完全享受到等离子电视机所带来的享受。其实等离子电视机的使用寿命是普通电视机的两倍左右。如果一台普通电视机的使用寿命是10年,那么等离子就可使用20年左右,并且等离子电视在显示、色彩、外观等许多方面都优于普通电视机,所以等离子电视机是未来电视的发展方向。
  在使用当中,与使用普通电视一样就可以了,一般不用特别注意什么(除非说明书上有注明的),因为等离子电视机的镜面有一层特殊涂料,平时清洁时不要用水或化学溶液来擦拭镜面,用干净的软布擦拭即可,尽量避免其他物质对镜面的损坏。
  缺点:因为采用R,G,B荧光粉自发光 ,又以固定像素寻址方式显示图像,长时间显示高亮度、高对比度的静止图像时,容易产生残留影像,甚至产生灼伤屏幕现象。所以观看电视时,在不影响正常收看的情况下,尽可能降低电视机亮度和对比度。 
 
等离子电视(PDP)的工作原理
 
  等离子显示屏是一种利用气体放电的显示装置,这种屏幕采用了等离子管作为发光元件。大量的等离子管排列在一起构成整个全屏幕。每个等离子管作为一个像素,每个像素由三种不同颜色的发光体组成---- 红、绿、蓝。由这些像素的明暗和颜色组合变化产生各种灰度和色彩的图像,这与CRT的原理很相似。等离子管的中心元件就是等离子体,它是由自由流动的离子(带电的原子)和电子(带负电的粒子)组成的气体。在通常情况下,气体主要由不带电的粒子组成,也就是说,一个单独的气体分子包括了相同数量的质子(原子核里带正电荷的粒子)和电子,带负电荷的电子和带正电荷的质子保持着完美的平衡,所以原子的净电荷为零。
  如果利用加大电压的方法把一些电子放入到气体内,那么它就会立刻产生变化,自由的电子与原子相撞,并使原子内部的电子数目失衡,这就会使其带正电荷,并产生了离子。在稳定等离子体中如果有电流穿行其中,那么带负电的粒子就会冲向那些带正电粒子的区域,而带正电的粒子也会杀向那些带负电粒子的区域。 在这样的运动中,双方的粒子不断地进行着撞击。这些撞击激发了等离子体中的气体原子,促使它们发出了光。这个工作原理很类似于普通日光灯。
  等离子显示屏上每个等离子对应的小室内都充有氖、氙原子,当它们被撞击时便发出了光。一般来讲,这些原子发出的光只是紫外线光,而紫外线光人眼是无法辨别的。但正是这些紫外线光,才激发了我们可见的光线。 
等离子电视的发展
 
  在过去的75年中,大量的主流电视机都是由同一种技术制造的,也就是阴极射线管(简称CRT)。CRT主要由电子枪、偏转线圈及阴极射线管组成。阴极射线管由于是由玻璃制造的,所以非常易碎,并且屏幕有不易察觉的抖动,不过它的致命弱点并不是上述这些,而是它过于庞大的体积。CRT技术的一个规律就是:屏幕面积越大,显像管也就越长,只有这样才能保证扫描电子枪有足够的深度空间把电子束打到整个屏幕上。
  新型的PDP电视开始抢占市场并成为时尚电视换代的代言人。这种新型电视具有和基于CRT技术生产的电视一样宽大的显示屏,但它的厚度只有10厘米左右。PDP影像的形成主要取决于高能量的电子束打在屏幕上数以百万计的小点(我们称之为“像素”)后所产生的亮度,在绝大多数电视上,共有三种(红、绿、蓝)颜色的像素,这三种颜色的像素被平均的分布在整个屏幕上。所有的色彩都可以通过选定的三种单色光,以适当的比例混合而成,而且绝大多数的彩色光也可以分解成特定的三种单色光。这三种选定的颜色被称为三原色,三原色相互独立,其中任一种基色是不能由另外两种基色混合而得到的,但它们相互以不同的比例混合,就可以得到不同的其它颜色。
     背光模组的发展肯定是功能越来越多,体积越来越小,然而功率却在越来越大,传统的不做热处理肯定是不允许的;然而怎么做热设计是很多公司面临的重要课题。
     热设计不是孤立的,需要考量结构设计,电路设计,硬件选择,软件选择等,是最终方案的妥协结果。
背光模组中主要需要散热处理的有:
     1. 电源模块上的mosfet,变压器等
     2.显示芯片,图像控制芯片等
     3.灯源(背光板)
    
电源散热方案:      
      其中电源模块有成熟的热设计方案,简单的有导热硅胶片加小散热片以及螺钉。这里主要是用自然对流,最小化减少散热组件所来的空间增加。
电源散热方案
显示芯片,图像控制芯片散热方案:
显示芯片,图像控制芯片散热方案:
背光源热设计方案:
现在行业内一般采用背光板整体热上下导通,通过在背光板背面加导热硅胶片,然后依靠固定结构将散热结构件(今属支架,外壳)或散热片与背光板紧密结合.
1.背光板(印制电路板或铝基板)的热设计处理
背光源热设计方案

 
2.导热硅胶片的参数选择与散热固定结构配合关系
   在背光板这里:
   *考虑导热需求:行业内现在一般采用1.50W/m-K的就可以的。且不建议加背胶。
   *考虑固定一般采用卡沟,螺钉,或直接紧压:一般要求导热硅胶片要软,有高的压缩比。(这里一般建议可以用金属结构件或金属外壳做散热部件的就尽可能不专门做散热片,这样可以节约空间,同时又更好的散热效果.
   *同时导热硅胶片还必须要有高的防火等级(建议UL94-V0),耐高低温,击穿电压防护,静电等参数要求。
   *考量公差累计,加工工艺等原因:导热硅胶片的厚度需要大于理论间隙,尺寸也需要大于理论间隙.(一般情况下,导热硅胶片厚度比理论间隙值需要大0.5mm,尺寸需要比理论设计值大1.0mm.)

    
3.傲川的导热硅胶片TP150系列为推荐在这领域使用的规格,并且已经在行业内普遍使用。
   附件为TP150规格书:
tp导热硅胶垫片,导热硅胶片,导热矽胶片,导热胶厂家